

INDIAN COUNCIL OF AGRICULTURAL RESEARCH Dr. Rajendra Prasad Road, Krishi Bhawan, New Delhi Tel/Fax.No.23382257, Tel.23046457

E-mail: adgseedicar@gmail.com

F. No. CS.11/8/2020-Seed E-Office No.81299 Dated 18th August, 2022

To.

The Director ICAR-NBPGR New Delhi – 110 012

Sub: Approval of proceedings of the XXXXVIII Meeting of Plant Germplasm Registration Committee (PGRC) held on 08.07.2022 at ICAR-NBPGR, New Delhi.

Sir,

With reference to your e-mail dated 19.07.2022 regarding the proceedings of the aforesaid meeting held 08.07.2022 at ICAR-NBPGR, New Delhi. I am pleased to inform you that the proceedings have been approved by the competent authority, i.e. DDG (CS), ICAR. This is for your information and further necessary action at you end.

(D.K.Yadava) ADG (Seed)

Copy to: Dr. Veena Gupta, Head, Member Secretary, PGRC

PLANT GERMPLASM REGISTRATION COMMITTEE

(Indian Council of Agricultural Research)

ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi

Proceedings of the

XXXXVIIIth Meeting of Plant Germplasm Registration Committee (PGRC) Held at ICAR-NBPGR, New Delhi on July 08, 2022 in virtual mode

The **XXXXVIII**th meeting of PGRC was held on **July 08, 2022** (10.30:00 hrs). at ICAR-NBPGR, New Delhi and it was attended by the following members/invitees:

1.	Dr TR Sharma	DDG (Crop Science), Indian Council of Agricultural Research, Krishi Bhavan, New Delhi	Chairman
2.	Dr DK Yadava	ADG (Seeds), ICAR, Krishi Bhavan, New Delhi	Member
3.	Dr RK Singh	ADG (Commercial Crops and F&FC), Krishi Bhavan, New Delhi	Member
4.	Dr Ashok Kumar	Director (Acting), ICAR-National Bureau of Plant Genetic Resources, New Delhi	Member
5.	Dr. GP Singh	Director, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana	Member
6.	Dr. Sujay Rakshit	Director, ICAR-Indian Institute of Maize Research, Ludhiana, Punjab	Member
7.	Dr Nita Khandekar	Director, ICAR-Indian Institute of Soybean Research, Indore, Madhya Pradesh	Member
8.	Dr. Thankamani	Director (Acting), ICAR-Indian Institute of Spices Research, Kozhikode, Kerala	Member
9.	Dr Padmini Swain	Director (Acting), ICAR-National Rice Research Institute, Cuttack, Odisha	Member
10.	Dr. Bansa Singh	Director, ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh	Member
11.	Dr L Subba Rao	Representative of Director, ICAR-Indian Institute of Rice Research, Hyderabad, Telangana	Member
12.	Dr. PM Singh	Representative of Director, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh	Member
13.	Dr. IP Singh	Representative of Director and Project Coordinator (AICRP on MULLaRP), ICAR-IIPR, Kanpur, Uttar Pradesh	Member
14.	Dr Elangovan M	Representative of Director, ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, Telangana	Member
15.	Dr VV Singh	Representative of Director, ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan	Member
16.	Dr N Mukta	Representative of Director, ICAR-Indian Institute of Oilseeds Research, Hyderabad, Telangana	Member
17.	Dr Rajiv Kumar	Representative of Director, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka	Member
18.	Dr. Amarjeet Gupta	Representative of Director, ICAR-Directorate of Onion And Garlic Research, Pune Maharashtra	Member
19.	Dr. RK Gautam,	Head (Acting), DGE, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi	Member

20.	Dr Anjali Kak Koul	Principal Scientist, DGC, ICAR-National Bureau of Plant	Member
		Genetic Resources, Pusa Campus, New Delhi	
21.	Dr Veena Gupta	Head (Acting), DGC, ICAR-National Bureau of Plant	Member
	_	Genetic Resources, Pusa Campus, New Delhi	Secretary

The **XXXXVIII**th meeting of Plant Germplasm Registration Committee was organized under the Chairmanship of Dr. TR Sharma, Deputy Director General (Crop Science), ICAR in virtual mode. Dr. Ashok Kumar, Director (Acting), ICAR-NBPGR welcomed and thanked the Chairman for holdings the meetings at quarterly interval. The Director also thanked all the experts and PC/PD for reviewing the proposals well in time for the meeting. Dr. Nita Khandekar, Director, ICAR-IISR, Indore wanted to know that if any new trait is identified in released variety can the variety be registered. The members were of the opinion that as per the ICAR approved PGRC guidelines release varieties cannot be registered as varieties are already protected.

The minutes of the XXXXVIIth meeting of PGRC were adopted as such after the confirmation of the Chairman. Following recommendations emerged during the discussion in PGRC meeting:

- The status on the utilization of the trait specific germplasm in the crop improvement programmes based on the requests received should be compiled and the information regarding utilization may also be sought from the crop based institute.
- To enhancing the utilization of the trait specific germplasm list of the registered germplasm along with the letter from Director NBPGR should be sent to ICAR institutes and SAUs

A total of 60 proposals were received for registration and out of that, 42 (proposals completed in all respect) were placed for consideration along with comments. These were received from the respective PD/PC or experts to ascertain their unique feature(s) and potential values, which formed the basis for registration. Each proposal was discussed in detail and recommendations of the committee for each proposal have been summarized in the enclosed table. Finally, 36 proposals belonging to 21 crop species were approved for registration and 03 were deferred for want of additional data and additional comment from experts. It was also agreed upon that next meeting of PGRC will be held in September 2022.

The meeting ended with vote of thanks by Dr. Veena Gupta, Member-Secretary, PGRC, ICAR-NBPGR

(Veena Gupta)

Member Secretary, PGRC

ICAR-National Bureau of Plant Genetic Resources

Pusa Campus, New Delhi-110 012

(TR Sharma)

DDG (CS) &Chairman, PGRC

Indian Council of Agricultural Research

KrishiBhavan, New Delhi-110 001

XXXXVIIIthGermplasm Registration Committee Meeting, July 8, 2022: Summary of New Proposals with Recommendations

S. No.	App. No./ National Id.	Other Identity	Crop/ Botanical Name	Pedigree	Potentially valuable features	Corresponding author	Recommendations of PGRC
Cere	eals		1 100000				1
1.	22080; IC0426273 INGR22064	Chittimuthyalu	Rice/ Oryza sativa	Landrace	Possess grain Zn (>24 ppm) content in polished rice. Possess unique aroma and grain type - aromatic short grain (ASG).	ICAR-IIRR	Recommended
2.	22081; IC0643971 INGR22065	RP6338-9	Rice/ Oryza sativa	KMR-3R*2// Nagina22	Higher grain yield than Nagina22 (Tolerant parent) and KMR3 (Susceptible parent) under high-temperature stress (> 5 °C) and ambient temperature. Heat-tolerant in terms of stable yield across varied temperature locations (Based on stability variance and rankings). Heat-tolerant in terms of increased Coefficient of non-photochemical Quenching (qN) trait under high-temperature stress.	Hyderabad,	Recommended
3.	22100; IC0642852 INGR22066	(AC33015) IC0642852; Bindli	Rice/ Oryza sativa	Landrace	Low phytic acid in grain (0.83 g/100g). High Zinc content in grain (59.1 mg/kg)	Dr. BC Patra, ICAR-NRRI, Cuttack, Odisha	Recommended
4.	22118; IC0645776 INGR22067	RP6252- BV/RIL/1705	Rice/ Oryza sativa	BPT5204 × Vardhan	Stable grain yield under low nitrogen (N) and 50% of the recommended N (N-50) inputs across tested field locations under AICRIP. High Nitrogen Use Efficiency (NUE), Physiological Efficiency (PE) and Recovery Efficiency (RE) under N-50 input. High Grain yield than Vardhan	ICAR -IIRR Hyderabad,	Recommended

					(Positive Check of NUE) under Low		
					and Recommended N input.		
5.	21163; IC0640674 INGR22068	HW5074	Wheat/ Triticum aestivum	HD 2833 (Sr2+ & Sr24/Lr24) * 4/COOK (Sr36/Pm6)	Consist of one adult plant minor stem rust resistance gene (APR), <i>Sr</i> 2 which has pleiotropic effect on leaf rust (<i>Lr</i> 27) and stripe rust (<i>Yr</i> 30) resistance. Contains two major stem rust (<i>Sr</i> 24 & <i>Sr</i> 36), one leaf rust (<i>Lr</i> 24) and one powdery mildew (Pm6) resistance genes. Resistant to the prevailing stem rust, leaf rust and powdery mildew pathotypes.	Dr Vikas VK, ICAR-IARI RS, Wellington, Tamil Nadu	Recommended
6.	22104; IC0645768 INGR22069	HW5068	Wheat/ Triticum aestivum	HW 4211 (MACS2496+ <i>Sr36</i> /Pm6)*3/ Darfkite	Contains three major stem rust (<i>Sr24</i> , <i>Sr26 & Sr36</i>), one leaf rust (<i>Lr24</i>) and one powdery mildew (Pm6) resistance genes Resistant to the prevailing stem rust, leaf rust and powdery mildew pathotypes of India.	Dr Vikas VK, ICAR-IARI RS Wellington, Tamilnadu	Recommended
7.	21307; IC335971 INGR22070	IC335971	Wheat/ Triticum aestivum	Collection from Kardigudda, Dharwad, Karnataka	Heat tolerance nature.	Dr. VP Agarwal, SKRAU, Bikaner, Rajasthan	Recommended
8.	22068; IC0645762 INGR22071	DTW 119	Wheat/ Triticum aestivum	Dharwar Dry/ DPW621-50	Heat Tolerance.	Dr. Sonia Sheoran, ICAR-IIWBR, Karnal, Haryana	Recommended
9.	22105; IC0645769 INGR22072	HW5067	Wheat/ Triticum aestivum	HW 4210 (LOK1+Sr36/ Pm6) *3/ Darfkite	Contains three major stem rust (<i>Sr24</i> , <i>Sr26 & Sr36</i>), one leaf rust (<i>Lr24</i>) and one powdery mildew (Pm6) resistance genes Resistant to the prevailing stem rust, leaf rust and powdery mildew pathotypes of India.	Dr. M Sivasamy, ICAR-IARI RS, Wellington, Tamil Nadu	Recommended
10.	22131; IC73591 INGR22073	IC73591	Wheat/ Triticum aestivum	Germplasm collection from	Resistance to leaf rust	Dr Sundeep Kumar, ICAR-NBPGR, Pusa Campus, New Delhi	Recommended

11.	22093; IC0645765 INGR22074	DWRBG7	Barley/ Hordeum vulgare	Bhowali, Nainital, Uttrakhand DL456/IEBO N17	High bold grain proportion in six rowed hulless barley as indicated with higher 1000 g weight and bold grains percentage (76.7%).	Dr Jogendra Singh, ICAR-IIWBR Karnal, Haryana	Recommended
12.	22108; IC0645770 INGR22075	DWRBG 8 (Tested as BCU 8028)	Barley/ Hordeum vulgare	Collection from Leh, Ladakh	Hulless barley with combination of high grain beta glucan (7.0 %) and protein (16.6 %) content.	Dr Dinesh Kumar, ICAR-IIWBR Karnal, Haryana	Recommended
13.	22032; IC0644600	V 603	Maize/ Zea mays	CM 152 x PDH-8 (EC928979)	Liguleless. Early maturing. V 603 is broadly in the genetic background of narrow-base population CM 152 (female parent of Vivek Maize Hybrid 15). Known heterotic affinity of CM 152 makes the stock directly usable maize hybrid breeding programmes.	Dr. RK Khulbe, ICAR-VPKAS Almora, Uttarakhand	Deferred: For want of published multilocation/environment data on the trait claimed.
14.	22033; IC0644601	V 604	Maize/ Zea mays	CM 152 x PDH-8 (EC928979)	Liguleless. Extra early maturing. V 604 is broadly in the genetic background of narrow-base population CM 152 (female parent of Vivek Maize Hybrid 15). Known heterotic affinity of CM 152 makes the stock directly usable maize hybrid breeding programmes.	Dr. RK Khulbe, ICAR-VPKAS Almora, Uttarakhand	Deferred: For want of published multilocation/environment data on the trais claimed.
Mille	ets		1		\$ 18 man		
15.	22016; IC0643959 INGR22076	IIMR FxM-7 (FXV 645)	Foxtail Millet/ Setaria italica	Selection from ISe 1593	Early duration with high grain yield (1897 kg/ha). Multiple disease resistance. Thick and Compact inflorescence.	Dr. Hariprasanna K, ICAR-IIMR, Hyderabad, Telangana	Recommended
16.	22024; IC0483093 INGR22077	LMV 533	Little Millet/ Panicum sumatrense	Pureline selection from GPmr 6	Early flowering (50-52 days) and early maturity (83-85 days) with grain and fodder yield advantage.	Dr. Ganapathy KN, ICAR-IIMR, Hyderabad, Telangana	Recommended
17.	22022; IC0643961 INGR22078	SPV 2625	Sorghum/ Sorghum bicolor	Selection from C43 x Yellow sorghum	Early maturing (110.3 days) yellow grained sorghum. Dwarf yellow grained sorghum	Dr. Sooganna, ICAR-IIMR,	Recommended

				(PYPS 2)-1-8-		Hyderabad,	
				1-1-1-1		Telangana	
Grai	in legumes						
18.	21215; IC0643992 INGR22079	HPKM191	Horse Gram/ Macrotyloma uniflorum	Mutant line developed from HPKC2 through gamma radiation	Very early maturing (84 days). Semidwarf. Synchronous maturity.	Dr. RK Chahota, CSKHPKV, Palampur Himachal Pradesh	Recommended
19.	22028; IC0643972	PSL-17	Lentil/ Lens culinaris	L-4076 x PSL- 11	Salt tolerance (ECe-5.8-6.7dS/m).	Dr. Dharmendra Singh ICAR-IARI, Pusa Campus, New Delhi	Not Recommended: It has been observed in annual report data that the normal check (IPL 316) and some other genotypes were performed better than the proposed genotype PSL-17. Hence, it cannot be recommended for registration.
20.	22047; IC0643974	PMD-7	Mung Bean/ Vigna radiata	Pusha Vishal x MH-565	Salt tolerance (ECiw-5.0, RSCiw 4me/1, pH 8.9)	Dr. Dharmendra Singh, ICAR-IARI, Pusa Campus, New Delhi	Not Recommended: In AICRP trial of 3 location data, numerical superiority was alone seen. There was no significant improvement. The claim is on salinity tolerance for which test location status alone was provided. No other parameter was provided genotype wise.
21.	22066; IC0251385	IC251385	Urd Bean/ Vigna mungo var. mungo	Introduction	Highly resistant against Callosobruchus chinensis.	Dr. Aditya Pratap, ICAR-IIPR, Kanpur, Uttar Pradesh	Deferred: For want of more comments from experts.

22.	22090; IC0553521 INGR22080	IC553521	Wild Bean/ Vigna stipulacea	selection from collected germplasm	High protein content (24.6%).	Dr. Padmavathi Gore, ICAR-NBPGR Pusa Campus, New Delhi	Recommended
23.	22091; IC0553564 INGR22081	IC553564	Wild Bean/ Vigna stipulacea	selection from collected germplasm	Long peduncle length (63 cm).	Dr. Padmavathi Gore, ICAR-NBPGR Pusa Campus, New Delhi	Recommended
Vege	tables						
24.	22001; IC0645764 INGR22082	ACC. 1666	Onion/ Allium cepa	Bulb selection from Accession 1473 (IC No. 594035)	Waterlogging tolerance.	Dr. Thangasamy A ICAR-DOGR, Pune, Maharashtra	Recommended
25.	22075; IC0645763 INGR22083	Accession 1656	Onion/ Allium cepa	Selection from Accession 1218 (IC No. 571949)	Drought tolerance.	Dr Thangasamy A, ICAR-DOGR, Pune, Maharashtra	Recommended
26.	22046; IC0645760 IC0645761 INGR22084	VL In. 31-1A (Female) & VL In. 31-1B (Maintainer)	Onion/ Allium cepa	In. 13 ms/ In. 43 (VLP-3)	Long day/intermediate day length onion line with Cytoplasmic male sterility (CMS).	Dr. NK Hedau, ICAR-VPKAS, Almora, Uttarakhand	Recommended
27.	22113; IC0645771 INGR22085	ADM/VV-1 / AZMC-1	Cucumber/ Cucumis sativus	Individual plant selection from local germplasm	High carotenoid content (54.8 μg/g in mature fruits; 8.12 μg/g in tender fruits). Orange flesh colour.	Dr AD Munshi, ICAR-IARI, Pusa Campus, New Delhi	Recommended
28.	22119; IC0632944 INGR22086	VRPLK-2	Spinach Beet (Palak) / Beta vulgaris var. bengalensis	Selection from open population of local collection	Delayed bolting habit by 16-33 days favours 1-2 more number of cutting(s) during year round sowing; and have faster plant growth i.e. 15.4% higher biomass production per cutting during round-the-year cultivation. Heat tolerance: Produces luxurious plant growth by tolerating high temperature i.e. average temperature	Dr BK Singh, ICAR-IIVR, Varanasi, Uttar Pradesh	Recommended

					maxima of 39-43 °C during April to June. Wide adaptability: VRPLK-2 produces higher marketable biomass yield i.e. 136-887 q/ha during round the year monthly sowing which is 56-147% higher than standard check variety because of delayed bolting habit, faster plant growth and heat tolerance.		
29.	22031; IC0642307 INGR22087	VRPE-29	Pea/ Pisum sativum subsp. hortense	The vegetable pea genotype 'VRPE-29' has been developed through single plant selection approach from the cross 'PM-5 × Ageta'.	Extra Early Genotype of Vegetable Pea (<i>Pisum sativum</i> var. <i>hortense</i>). synchronous maturity, thus suitable for single picking or Mechanical harvesting and Multiple cropping	Dr. Jyoti Devi, ICAR-IIVR, Varanasi, Uttar Pradesh	Recommended
Oilse	22129; IC0642961 IC0623130 INGR22088	VRCAR-252 (A-line) & Kashi Krishna (B-line)	Carrot/ Daucus carota	A CMS plant in an open-pollinated population with orangish-red coloured root as donor parent, and black carrot variety Kashi Krishna as recurrent parent	VRCAR-252 is a petalod-CMS line of black carrot with better heterotic potential for root yield and uniformity. The roots of VRCAR-252 are excellent source of plant derived anthocyanins (278 mg/100 g FW) & phenolics (323 mg GAE/100 g FW); having better anthocyanin yield potential (67 kg/ha); and greater antioxidative ability (FRAP value of 47 µmol TE/g FW) i.e. 28-times higher than red/orange/yellow carrots. VRCAR-252 and its maintainer are ideally synchronous in flowering/pollination activities which facilitate proper pollination and maximum seed set in CMS line.	Dr BK Singh, ICAR-IIVR, Varanasi, Uttar Pradesh	Recommended

EC0041469 Linum usitatissimum Linum usitatissimum Collection g/1000-seeds) Linum usitatissimum Linum usitatissimum Collection g/1000-seeds) Linum usitatissimum Collection g/1000-seeds) Linum usitatissimum Collection g/1000-seeds) ICAR-NBPGR, Pusa Campus, New Delhi that has been tested alon with this accession is superior in terms of larger seed are (14.63 mm2), largest capsul size with capsule area 52.5 mm2 and high thousands eweight (10.93 g) as compare to 9.51 g in EC004146 EC0041700 with is superiority for seed traits make perferred over EC004146 for registration as it has no been registered as yet. Soybean/ EC34372 INGR22091 Lintroduced from Hungary Glycine max Introduced from Hungary Lintroduced from Hungary Anthracnose resistance, Early Maturing, Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and		1	T	T	T			
NGR22089 Second Indian Mustard NRCHB IO High temperature tolerance at seedling stage. Moisture stress tolerance. High ligam content (sesamin 61.2) Dr HS Meena, CRA-DRMR, Bharatpur, Rajasthan Recommended CRA-DRMR, Bharatpur, Rajasthan Bose Institute, CRA-DRMR,	31.	· ·					*	Recommended
Secommended			26	Brassica juncea	DRMR 2269			
ICO645774 27		INGR22089				, and the second	1 . 3	
INGR22090 R6 Sesame/ Sesamum sp Sesa	32.	22123;	DRMR 2018-	Indian Mustard/	NRCHB 101 ×		Dr HS Meena,	Recommended
Sexamum sp R6 Sexamum sp		IC0645774	27	Brassica juncea	DRMR 2398	seedling stage. Moisture stress	ICAR-DRMR,	
ICO643978 INGR 22090 Sesamum sp Specific hybrid of Sesamum indicum L. (female) (IC 131989 MP, NBPCR) and S. mulayanum (male) (wild)		INGR22099				tolerance.	Bharatpur, Rajasthan	
NGR22090 Of Sesamum indicum L. (female) (IC 131398) MP, NBPGR) and S. mulayanum (male) (wild) EC0041469 EC0041469 Linseed/ Limm usitatissimum EC0041469 EC0041700 EC	33.	20147;	R6	Sesame/	An inter-	High lignan content (sesamin 61.2	Dr. G Gangopadhyay,	Recommended
Indicum L. (female) (IC 131989 MP, NBPGR) and S. mulayanum (male) (wild)		IC0643978		Sesamum sp	specific hybrid	ug/ml; sesamol 15.1 ug/ml).	BOSE Institute,	
Second Comparison Compari		INGR22090			of Sesamum	High oil content (52.9% w/w).	Kolkata, West Bengal	
34. 22101; EC0041469 Linseed/ Linum usitatissimum EC0041469 Linum usitatissimum EC0041469 Linum usitatissimum EC0041469 Linum usitatissimum EC0041469 EC0041469 EC0041469 EC0041469 EC0041469 EC0041469 EC004170 EC0041469 EC004170 EC004170 EC0041469 EC004170 EC004170 EC004170 EC0041469 EC004170 EC004170 EC0041469 EC004170 EC004170 EC0041469 EC004170 EC0041469 EC004170 EC0041469 EC004170 EC0041469 EC004170 EC0041469 EC004170 Early Maturing					indicum L.	Tolerance to charcoal rot (causal		
NBPGR2 and S. mulayanum (male) (wild)					(female) (IC	organism Macrophomina		
NBPGR2 and S. mulayanum (male) (wild)					131989 MP,	phaseolina).		
Second S					NBPGR) and			
Second S					S. mulayanum			
Second S								
EC0041469 Linum usitatissimum Linum usitatissimum Collection g/1000-seeds) Linum usitatissimum Linum usitatissimum Collection g/1000-seeds) Linum usitatissimum Collection g/1000-seeds) Linum usitatissimum Collection g/1000-seeds) ICAR-NBPGR, Pusa Campus, New Delhi that has been tested alon with this accession is superior in terms of larger seed are (14.63 mm2), largest capsul size with capsule area 52.5 mm2 and high thousands eweight (10.93 g) as compare to 9.51 g in EC004146 EC0041700 with is superiority for seed traits make perferred over EC004146 for registration as it has no been registered as yet. Soybean/ EC34372 INGR22091 Lintroduced from Hungary Glycine max Introduced from Hungary Lintroduced from Hungary Anthracnose resistance, Early Maturing, Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and	34.	22101;	EC0041469	Linseed/	. , . ,	Bold seed. High Test-Weight. (9.51	Dr DP Wankhede,	Not recommended: As per
usitatissimum Pusa Campus, New Delhi Pusa Campus, New Delhi that has been tested alon with this accession is superic in terms of larger seed are (14.63 mm2), largest capsul size with capsule area 52.5 mm2 and high thousand see weight (10.93 g) as compare to 9.51 g in EC004146 EC0041700 with i superiority for seed traits may be preferred over EC004146 for registration as it has no been registered as yet. 35. 22083; EC34372 INGR22091 BC34372 INGR22091 Introduced from Hungary Anthracnose resistance. Early Maturing. Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and e10). How had shown rare alleles (e2, e3, e4 and e10).		EC0041469		Linum			ICAR-NBPGR,	
New Delhi that has been tested alon with this accession is superit in terms of larger seed are (14.63 mm2), largest capsul size with capsule area 52.5 mm2 and high thousand see weight (10.93 g) as compare to 9.51 g in EC004146 EC0041700 with i superiority for seed traits may be preferred over EC004146 for registration as it has no been registered as yet. 35. 22083; EC34372				usitatissimum			Pusa Campus,	another accession EC001470
with this accession is superior in terms of larger seed are (14.63 mm2), largest capsul size with capsule area 52.5 mm2 and high thousands see weight (10.93 g) as compare to 9.51 g in EC004146 EC0041700 with i superiority for seed traits make preferred over EC004146 for registration as it has no been registered as yet. 35. 22083; EC34372 INGR22091 Soybean/ Glycine max Introduced from Hungary Anthracnose resistance. Early Maturing. Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and E10), four had shown rare alleles (e2, e3, e4 and E10), four had shown rare alleles (e2, e3, e4 and E10), four had shown rare alleles (e2, e3, e4 and E10).								that has been tested along
in terms of larger seed are (14.63 mm2), largest capsul size with capsule area 52.5 mm2 and high thousand see weight (10.93 g) as compare to 9.51 g in EC04146 EC0041700 with i superiority for seed traits may be preferred over EC004146 for registration as it has no been registered as yet. 35. 22083; EC34372 Soybean/ Glycine max Introduced from Hungary Anthracnose resistance. Early Maturing. Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and labour product of the seed are (14.63 mm2), largest capsul size with capsule area 52.5 mm2 and high thousand see weight (10.93 g) as compare to 9.51 g in EC004146 EC0041700 with is superiority for seed traits may be preferred over EC004146 for registration as it has no been registered as yet. Recommended								
35. 22083; EC34372 Soybean/ Glycine max Introduced from Hungary Fundamental from Hungary Soybean/ Glycine max Introduced from Hungary Soybean/ Glycine max Fundamental from Hungary Soybean/ Glycine max Fundamental from Hungary Soybean/ Glycine max Soybean/ S								
size with capsule area 52.5 mm2 and high thousand see weight (10.93 g) as compare to 9.51 g in EC004146 EC0041700 with EC0041700 superiority for seed traits made preferred over EC004146 for registration as it has no been registered as yet. 35. 22083; EC34372 Soybean/ Glycine max Introduced from Hungary EC34372 INGR22091 Soybean/ Glycine max Introduced from Hungary Early Maturing. Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and shown rare								
mm2 and high thousand see weight (10.93 g) as compare to 9.51 g in EC0041466 EC0041700 with i superiority for seed traits made be preferred over EC0041466 for registration as it has not been registered as yet. 35. 22083; EC34372 Soybean/ INGR22091 FC34372 FC34372 Soybean/ Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and shown rare alleles (
weight (10.93 g) as compare to 9.51 g in EC0041469 EC0041700 with i superiority for seed traits may be preferred over EC004146 for registration as it has no been registered as yet. Soybean/ Glycine max Soybean/ Glycine max Introduced from Hungary Anthracnose resistance. Early Maturing. Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and shown rare alleles (e3, e3, e4, e4) and shown rare al								
to 9.51 g in EC0041466 EC0041700 with i superiority for seed traits ma be preferred over EC004146 for registration as it has no been registered as yet. Soybean/ Glycine max Introduced from Hungary Anthracnose Early Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and to 9.51 g in EC0041466 EC0041700 with i superiority for seed traits ma been registration as it has no been registered as yet. Recommended Recommended								
Soybean Soyb								
superiority for seed traits may be preferred over EC004146 for registration as it has not been registered as yet. 35. 22083; EC34372 Soybean/ Glycine max Soybean/ Glycine max Soybean/ From Hungary Soybean/ Glycine max Introduced from Hungary Early Maturing. Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and shown rare alleles (e2, e3, e4, e4, e4, e4, e4, e4, e4, e4, e4, e4								
be preferred over EC004146 for registration as it has no been registered as yet. Soybean/ EC34372 INGR22091 Soybean/ Glycine max Introduced from Hungary Fernal Hungary Anthracnose Early Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and be preferred over EC004146 for registration as it has no been registered as yet. Recommended Recommended								
35. 22083; EC34372 Soybean/ INGR22091 Soybean/ Glycine max Soybean/ Glycine max Introduced from Hungary From Hungary Anthracnose resistance. Early Maturing. Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and for registration as it has no been registered as yet. Recommended Recommended								
35. 22083; EC34372 Soybean/ Glycine max Introduced from Hungary Early Maturing. Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and E10).								
35. 22083; EC34372 Soybean/ Glycine max Introduced from Hungary Early Maturing. Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and E10).								
EC34372 INGR22091 Glycine max from Hungary Early Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and	35.	22083:	EC34372	Sovbean/	Introduced	Anthracnose resistance.	Dr. V Natarai.	•
Out of six genes tested for early maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and								
maturity and photoperiod response (E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and								
(E1, E2, E3, E4, E9 and E10), four had shown rare alleles (e2, e3, e4 and								
had shown rare alleles (e2, e3, e4 and							1.140117 4 1 1440011	
$ \cdot \cdot$						e9).		

Spic	es						
36.	21003; IC0645756 INGR22092	Acc 562	Nutmeg/ Myristica fragrans	Open pollinated progeny from farmers plot	Monoecious nutmeg. Monoecious, Fruits borne in clusters of 2 to 7. High yielding.	Dr. J Rema, ICAR-IISR Kozhikode, Kerala	Recommended
Med	licinal & Aroma	atic Plants					
37.	21306: IC0590905 INGR22093	TRA-1 (CIARI- Samridhi)	Noni/ <i>Morinda</i> <i>citrifolia</i>	Local Germplasm	Small fruit (55-60 g) high yield due to more number of fruits. Dwarf stature (1.7-2.5 m) year round yielder.	Dr. I Jaisankar, ICAR- CIARI, Port Blair, A and N Islands,	Recommended
Frui	ts & Nuts			<u> </u>			
38.	21226; IC0594046 INGR22094	ML-2	Mango/ Mangifera indica	Collection from Manjery, Guptapara, South Andaman, Andaman and Nicobar Islands	Polyembryony. Salt tolerant. Regular bearing.	Dr. T Damodaran, ICAR-CSSRI-RRS, Karnal, Haryana	Recommended
39.	22078; IC0642756 INGR22095	IC-0642756	Rambutan/ Nephelium lappaceum	selection from seedling population	Yellow colour fruit. More Number of fruits per bunch (15-20 fruits/ Bunch). Medium fruit size.	Dr. PC Tripathi, ICAR-IIHR, Bengaluru, Karnataka	Recommended

Summary of Deferred Proposals of previous PGRC Meeting with Recommendations

S. No.	App. No./ National	Proposer Identity	Crop/ Botanical	Pedigree	Potentially valuable features	Corresponding author	Recommendations of PGRC
1	Id.	VII. 260	Name	WID O (I)	F 1 (100	D DOLL!	<u> </u>
1.	21084;	VL 360	Finger Millet/	WR 2 (Late maturing	Early maturity (100	·	Recommended
	IC0640694		Eleusine	white grain genotype) /	days). White grain.	ICAR-VPKAS,	
	INGR22096		coracana	VL 201 (early		Almora, Uttarakhand	
				maturing brown grain			
				genotype)			
2.	21275;	Somatic hybrid	Indian	(B. juncea + S. alba) *	Resistant against	Dr. DK Yadava,	Recommended
	IC0645757	(H1 * B. j. cv	Mustard/	B. j cv NPJ-212	Alternaria brassicae.	ICAR-Krishi Bhavan,	
	INGR22097	NPJ- 212)	Brassica		High yeild potential on	New Delhi	
			juncea		the Somatic hybrid H1.		
					Short height and		
					duration than the H1.		
3.	21314;	Somatic hybrid (Indian	(B. juncea + S. alba) *	Resistant for Alternaria	Dr. DK Yadava,	Recommended
	IC0645758	H2 * B. j. cv	mustard/	B. j cv NPJ-212	brassicae. High yeild	ICAR-Krishi Bhavan,	
	INGR22098	NPJ- 212)	Brassica		potential on the Somatic	New Delhi	
		·	juncea		hybrid H2. Short height		
					and duration than the H2.		

(Veena Gupta)

Member Secretary, PGRC

ICAR-National Bureau of Plant Genetic Resources

Pusa Campus, New Delhi-110 012

(TR Sharma)

DDG (CS) & Chairman, PGRC

Indian Council of Agricultural Research

KrishiBhavan, New Delhi-110 001

3/mg